C.U.SHAH UNIVERSITY Summer Examination-2020

Subject Name: Problem Solving - II

Subject Code: 5SC0	3PRS1	Branch: M.Sc. (Mathematics)	
Semester : 3	Date : 05/03/2020	Time : 02:30 To 05:30	Marks :70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1		Attempt the following	(07)
	a.	Form partial differential equation from $z = A e^{pt} \sin px$, where A and p are constants	(02)
	b.	$Find\Delta^2 x^3 at x = 0.$	(02)
	C.	Find the product of $(1245)(32154)$.	(02)
	d.	Write relation between E and Δ .	(01)
Q-2		Attempt all questions	(14)
	a.	Find Particular Integral of $(D^2 - 2DD' + D'^2)Z = e^{x+2y}$.	(05)
	b.	Solve: $z (x + y)p + z (x - y) = x^2 + y^2$.	(05)
	c.	Solve: $pqz = p^2(xq + p^2) + q^2(yp + q^2)$ using Charpit's method. OR	(04)
Q-2		Attempt all questions	(14)
-	a.	Find the complete integral of $(p^2 + q^2)y = qz$.	(05)
	b.	Solve: $x_2x_3p_1 + x_3x_1p_2 + x_1x_2p_3 + x_1x_2x_3 = 0$.	(05)
	c.	Solve: $p + 3q = 5z + \tan(y - 3x)$.	(04)
Q-3		Attempt all questions	(14)
-	a.	Find a complete integral of $p^2 - y^2 q = y^2 - x^2$.	(05)
	b.	Let <i>G</i> be a group, <i>H</i> and <i>K</i> be subgroups of <i>G</i> , if $(o(H), o(K)) = 1$ then what we can say about $o(H \cap K)$?	(05)
	c.	Find the characteristics of $4r + 5s + t + p + q - 2 = 0$	(04)
0.0		UK UK	
Q-3	_	Attempt all questions S_{abc} for a matrix for a^{2} , $A_{b} = 1$, O_{bc} Describe Σ_{abc} is the left of the second	(14)
	a.	Solve for a positive root of $x^3 - 4x + 1 = 0$ by Regula Falsi method.	(05)
	b.	For which values of <i>n</i> , is the polynomial $P(x) = x^3 - nx + 2$ reducible over <i>O</i> ?	(05)

c. Using the Euler's theorem, find the remainder obtained on dividing 3^{256} by (04) 14.

SECTION – II

Q-4	a.	Attempt the following Find the number of cosets of $H = (4\mathbf{Z}, +)$ in $G = (\mathbf{Z}, +)$.					
	b.	Classify the following Partial Differential Equation : $x^2r - 2s + t = 0$.					
	c. Write sterling's formula.d. Every field is integral domain. True/False.						
Q-5		Attempt all questions	(14)				
	a.	Find the positive root of $x = \cos x$ using Newton – Raphson method.					
	b.	Solve $\frac{dy}{dx} = x + y$, $y(0) = 1$. Obtain $y(0.1)$ using Picard's method.					
	c.	Using Lagrange's formula to fit a polynomial to the data					
		X -1 0 2 3					
		<u>Y -8 3 1 12</u>					
		and hence find $Y(1)$					
0-5		UK Attempt all questions	(14)				
Q-3	а.	Solve the system of equations	(14)				
	u	3x + y - z = 3, $2x - 8y + z = -5$, $x - 2y + 9z = 8$					
		Using Gauss Elimination method.					
	b.	Solve the following system of equation by Gauss Seidel method.					
		10x - 5y - 2z = 3, $4x - 10y + 3z = -3$, $x + 6y + 10z = -3$.					
0-6		Attempt all questions	(14)				
C	a.	Solve $\frac{dy}{dy} = x^2 - y$ given $y(0) = 1$. Find $y(0,1)$ using Runge Kutta's					
		method (take $h = 0.1$)					
	b.	Let H is a subgroup of G and $a \in G$. Define $aHa^{-1} = \{aha^{-1} : h \in H\}$.	(05)				
		Show that aHa^{-1} is a subgroup of G.					
	c.	If $\Delta f(x) = 2x^3 - 6x^2 + 7x + 10$ then find $f(x)$.	(04)				
		OR					
Q-6		Attempt all Questions	(14)				
	a. 1-	Factorize $x^2 + x + 5$ in $F[x]$, where F is the field of integers mod 11.					
	D.	Prove that every held is a Euclidean ring.	(05)				
	c.	If R is a finite commutative ring with unit then prove that every prime ideal of R is a maximal ideal of R .	(04)				

